If it's not what You are looking for type in the equation solver your own equation and let us solve it.
400=120x-5x^2
We move all terms to the left:
400-(120x-5x^2)=0
We get rid of parentheses
5x^2-120x+400=0
a = 5; b = -120; c = +400;
Δ = b2-4ac
Δ = -1202-4·5·400
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-80}{2*5}=\frac{40}{10} =4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+80}{2*5}=\frac{200}{10} =20 $
| 80+10n=150+5n | | 75x+2=3 | | 10x+4-7x=1x+5 | | 35(p+20)=3290 | | 9y(6y+15)=25 | | -10+r/10=-9 | | 12h=9h+37 | | X^2+11x-146=0 | | 116+y=5 | | -5+10x=25 | | 6000=60x | | 5x+60=45 | | -2/5y=8 | | 6=-1r | | 7(y-3)=-2(-2y | | 5n=4n=32 | | 9=x/6+8 | | 3+x/8=-2 | | 8/n=11/5 | | (3x+4)^4/5=81 | | 7/r-2=10/7 | | 32(p+25)=1760 | | 64k=16 | | (2x+16)(4x+3)=35° | | 2-4p=62 | | 32(p+25)=1,760 | | 3(x-2)=5-(x+7) | | 4x+27+9x−115=107 | | 6a^+7a-3=0 | | 2.5−x/3.2=5/2 | | 7x+1+7x+6=15x | | 2x+33+3x+20=113 |